19 resultados para Bayesian, statistics, genetics, phenotype analysis, complex diseases, complex etiology, model comparison, latent class analysis, grade of membership, fuzzy clustering, item response theory, migraine, twin study, heritability, genome-wide linkage analysis

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence and spread of infectious diseases reflects the interaction of ecological and economic factors within an adaptive complex system. We review studies that address the role of economic factors in the emergence and spread of infectious diseases and identify three broad themes. First, the process of macro-economic growth leads to environmental encroaching, which is related to the emergence of infectious diseases. Second, there are a number of mutually reinforcing processes associated with the emergence/spread of infectious diseases. For example, the emergence and spread of infectious diseases can cause significant economic damages, which in turn may create the conditions for further disease spread. Also, the existence of a mutually reinforcing relationship between global trade and macroeconomic growth amplifies the emergence/spread of infectious diseases. Third, microeconomic approaches to infectious disease point to the adaptivity of human behavior, which simultaneously shapes the course of epidemics and responds to it. Most of the applied research has been focused on the first two aspects, and to a lesser extent on the third aspect. With respect to the latter, there is a lack of empirical research aimed at characterizing the behavioral component following a disease outbreak. Future research should seek to fill this gap and develop hierarchical econometric models capable of integrating both macro and micro-economic processes into disease ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To describe the training undertaken by pharmacists employed in a pharmacist-led information technology-based intervention study to reduce medication errors in primary care (PINCER Trial), evaluate pharmacists’ assessment of the training, and the time implications of undertaking the training. Methods: Six pharmacists received training, which included training on root cause analysis and educational outreach, to enable them to deliver the PINCER Trial intervention. This was evaluated using self-report questionnaires at the end of each training session. The time taken to complete each session was recorded. Data from the evaluation forms were entered onto a Microsoft Excel spreadsheet, independently checked and the summary of results further verified. Frequencies were calculated for responses to the three-point Likert scale questions. Free-text comments from the evaluation forms and pharmacists’ diaries were analysed thematically. Key findings: All six pharmacists received 22 hours of training over five sessions. In four out of the five sessions, the pharmacists who completed an evaluation form (27 out of 30 were completed) stated they were satisfied or very satisfied with the various elements of the training package. Analysis of free-text comments and the pharmacists’ diaries showed that the principles of root cause analysis and educational outreach were viewed as useful tools to help pharmacists conduct pharmaceutical interventions in both the study and other pharmacy roles that they undertook. The opportunity to undertake role play was a valuable part of the training received. Conclusions: Findings presented in this paper suggest that providing the PINCER pharmacists with training in root cause analysis and educational outreach contributed to the successful delivery of PINCER interventions and could potentially be utilised by other pharmacists based in general practice to deliver pharmaceutical interventions to improve patient safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered “snowball” state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere. It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hippocampus plays a pivotal role in the formation and consolidation of episodic memories, and in spatial orientation. Historically, the adult hippocampus has been viewed as a very static anatomical region of the mammalian brain. However, recent findings have demonstrated that the dentate gyrus of the hippocampus is an area of tremendous plasticity in adults, involving not only modifications of existing neuronal circuits, but also adult neurogenesis. This plasticity is regulated by complex transcriptional networks, in which the transcription factor NF-κB plays a prominent role. To study and manipulate adult neurogenesis, a transgenic mouse model for forebrain-specific neuronal inhibition of NF-κB activity can be used. In this study, methods are described for the analysis of NF-κB-dependent neurogenesis, including its structural aspects, neuronal apoptosis and progenitor proliferation, and cognitive significance, which was specifically assessed via a dentate gyrus (DG)-dependent behavioral test, the spatial pattern separation-Barnes maze (SPS-BM). The SPS-BM protocol could be simply adapted for use with other transgenic animal models designed to assess the influence of particular genes on adult hippocampal neurogenesis. Furthermore, SPS-BM could be used in other experimental settings aimed at investigating and manipulating DG-dependent learning, for example, using pharmacological agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of 14 studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight newly discovered signals yielding association with P < 5 × 10(-6) in nine independent data sets (2,818 cases and 4,083 controls), we observed two loci that yielded genome-wide significant combined P values near OLFM4 at 13q14 (rs9568856; P = 1.82 × 10(-9); odds ratio (OR) = 1.22) and within HOXB5 at 17q21 (rs9299; P = 3.54 × 10(-9); OR = 1.14). Both loci continued to show association when two extreme childhood obesity cohorts were included (2,214 cases and 2,674 controls). These two loci also yielded directionally consistent associations in a previous meta-analysis of adult BMI(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The management of a public sector project is analysed using a model developed from systems theory. Linear responsibility analysis is used to identify the primary and key decision structure of the project and to generate quantitative data regarding differentiation and integration of the operating system, the managing system and the client/project team. The environmental context of the project is identified. Conclusions are drawn regarding the project organization structure's ability to cope with the prevailing environmental conditions. It is found that the complexity of the managing system imposed on the project was unable to achieve this and created serious deficiencies in the outcome of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the Unified Huntington's Disease Rating Scale (UHDRS) is widely used in the assessment of Huntington disease (HD), the ability of individual items to discriminate individual differences in motor or behavioral manifestations has not been extensively studied in HD gene expansion carriers without a motor-defined clinical diagnosis (ie, prodromal-HD or prHD). To elucidate the relationship between scores on individual motor and behavioral UHDRS items and total score for each subscale, a nonparametric item response analysis was performed on retrospective data from 2 multicenter longitudinal studies. Motor and behavioral assessments were supplied for 737 prHD individuals with data from 2114 visits (PREDICT-HD) and 686 HD individuals with data from 1482 visits (REGISTRY). Option characteristic curves were generated for UHDRS subscale items in relation to their subscale score. In prHD, overall severity of motor signs was low, and participants had scores of 2 or above on very few items. In HD, motor items that assessed ocular pursuit, saccade initiation, finger tapping, tandem walking, and to a lesser extent, saccade velocity, dysarthria, tongue protrusion, pronation/supination, Luria, bradykinesia, choreas, gait, and balance on the retropulsion test were found to discriminate individual differences across a broad range of motor severity. In prHD, depressed mood, anxiety, and irritable behavior demonstrated good discriminative properties. In HD, depressed mood demonstrated a good relationship with the overall behavioral score. These data suggest that at least some UHDRS items appear to have utility across a broad range of severity, although many items demonstrate problematic features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of urban land-surface models have been developed in recent years to satisfy the growing requirements for urban weather and climate interactions and prediction. These models vary considerably in their complexity and the processes that they represent. Although the models have been evaluated, the observational datasets have typically been of short duration and so are not suitable to assess the performance over the seasonal cycle. The First International Urban Land-Surface Model comparison used an observational dataset that spanned a period greater than a year, which enables an analysis over the seasonal cycle, whilst the variety of models that took part in the comparison allows the analysis to include a full range of model complexity. The results show that, in general, urban models do capture the seasonal cycle for each of the surface fluxes, but have larger errors in the summer months than in the winter. The net all-wave radiation has the smallest errors at all times of the year but with a negative bias. The latent heat flux and the net storage heat flux are also underestimated, whereas the sensible heat flux generally has a positive bias throughout the seasonal cycle. A representation of vegetation is a necessary, but not sufficient, condition for modelling the latent heat flux and associated sensible heat flux at all times of the year. Models that include a temporal variation in anthropogenic heat flux show some increased skill in the sensible heat flux at night during the winter, although their daytime values are consistently overestimated at all times of the year. Models that use the net all-wave radiation to determine the net storage heat flux have the best agreement with observed values of this flux during the daytime in summer, but perform worse during the winter months. The latter could result from a bias of summer periods in the observational datasets used to derive the relations with net all-wave radiation. Apart from these models, all of the other model categories considered in the analysis result in a mean net storage heat flux that is close to zero throughout the seasonal cycle, which is not seen in the observations. Models with a simple treatment of the physical processes generally perform at least as well as models with greater complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.